

Old School Echo One Pulse, One Scan Line

- Frame rate strictly limited by PRF and number of scanlines per frame
- Even greater limitation in color Doppler (several pulses, one scan line)

Parallel Processing Dramatic Breakthrough in Mid-90's Social Processing Parallel Processing

Serial Processing Parallel Processing

One scan line is received for each ultrasound pulse.

Several scan lines are received for each ultrasound pulse.

Synthetic Aperture Imaging Allows Extremely High Frame Rates

- Theoretically, 2D (and even 3D) images can be generated from a SINGLE unfocused ultrasound pulse
 - -Complex reconstruction algorithms
 - -Potentially frame rates in the 1000's
- This sounds too good to be true...what's the downside?
 - -Unfocused waves are weak, giving poor signal to noise ratio
 - -Imperfect processing reduces spatial and contrast resolution

Software Beam Formation A BIG Breakthrough in Echocardiography

- Store ALL the RF US data in local memory
- Do all the processing with software
 - High flexibility, easy to trade-off temporal, spatial, and contrast resolution

Northwestern

- Ride the wave of Moore's Law

Moore's Law in Perspective

In 1965, it took ~\$900 and 7 hours to fly from New York to Paris.

The same in 2015.

If Moore's law had applied, however, today it would cost less than ½¢ and take less than a quarter second (109-fold improvement in efficiency!).

Focusing: The Old Way

Transmit focus

Receive focus

Optimal imaging at only one depth

Imagine if you could get the whole picture in focus at once... Northwestern

True Confocal Imaging Equal Focus at All Depths

The same RF data is processed repeatedly to optimize all depths

Look, Ma, no focus!

True Confocal Imaging Bonus Feature

Fatten out the apex at the push of a button!

12 Years of Speckle Tracking! What Can We Do with cSound?

Increased Strain After Percutaneous AVR

Expert Consensus for Multimodality Imaging Evaluation of Adult Patients During and After Cancer Therapy

- Strain can be measured with DTI or (preferred) STE
- GLS is optimal parameter for early detection of LV dysfunction
- Compare patient to his/her baseline with change of 15% likely significant

Cardiac Amyloidosis

Amyloidosis patients often show apical sparing

50ish yo Woman with Bx Proven Lung Sarcoidosis Is There Cardiac Involvement?

Thick walls, mild MR, preserved EF

Surprise! It's Amyloid in the Heart...

Apex = -14.2%, Rest = -5.5%, Ratio = 2.6x

Frame Rate Limits Use of Strain Imaging in Stress and Dobutamine

- For excellent tracking, we'd like ~60 frames/beat
- So FR in Hz should roughly equal HR in BPM
- Till now, there has been too much degradation in image quality to use above HR of 100.

One of These is at 52 Hz, the Other at 122 Hz Can You Tell the Difference???

Easy Navigation During the DbE Test

Automated AFI at Each Stage

Applicable to Supine Bicycle Stress

Dobutamine Example: Rest

Dobutamine Example: Low Dose

Dobutamine Example: Peak

Dobutamine Example: Recovery

Another case

Low Dose: Posterior Strain Increases 50 18 Low Peak Systolic Strain ANT_SEPT -16 ANT -20 10 -12 -15 -15 INF LAT GLPS_LAX GLPS_A4C GLPS_A2C GLPS_AVg -19.7 % -19.3 % -14 AVC HR_ApLAX 311 msec POST

Mid Dose: Posterior Strain Decreases Peak Systolic Strain 50 22 Mid ANT SEPT -28 INF LAT GLPS_LAX GLPS_A4C GLPS_A2C -18.0 % -19.1 % -20.6 % -8 GLPS_Avg -19.2 % AVC HR_ApLAX 311 msec 102 bpm POST

Peak Dose: Posterior Dyskinesis Sor 17 Peak Peak Systolic Strain ANT_SEPT -22 ANT -26 -12 -15 -12 LAT INF GLPS_LAX GLPS_A4C GLPS_A2C GLPS_Avg -19.0 % -20.8 % -18.8 % AVC HR_ApLAX 229 msec POST

Software Beam Formation A BIG Breakthrough in Echocardiography

- Highly flexible processing of RF US data
- Opens possibility of new applications
- As computers become more powerful, echocardiography should further improve
 Northwestern